39 research outputs found

    Data-Driven Cooperative Adaptive Cruise Control for Unknown Nonlinear Vehicle Platoons

    Full text link
    This paper studies cooperative adaptive cruise control (CACC) for vehicle platoons with consideration of the unknown nonlinear vehicle dynamics that are normally ignored in the literature. A unified data-driven CACC design is proposed for platoons of pure automated vehicles (AVs) or of mixed AVs and human-driven vehicles (HVs). The CACC leverages online-collected sufficient data samples of vehicle accelerations, spacing and relative velocities. The data-driven control design is formulated as a semidefinite program (SDP) that can be solved efficiently using off-the-shelf solvers. The efficacy and advantage of the proposed CACC are demonstrated through a comparison with the classic adaptive cruise control (ACC) method on a platoon of pure AVs and a mixed platoon under a representative aggressive driving profile.Comment: 6 pages, 5 figures; This paper is under submissio

    Data-driven dual-loop control for platooning mixed human-driven and automated vehicles

    Full text link
    This paper considers controlling automated vehicles (AVs) to form a platoon with human-driven vehicles (HVs) under consideration of unknown HV model parameters and propulsion time constants. The proposed design is a data-driven dual-loop control strategy for the ego AVs, where the inner loop controller ensures platoon stability and the outer loop controller keeps a safe inter-vehicular spacing under control input limits. The inner loop controller is a constant-gain state feedback controller solved from a semidefinite program (SDP) using the online collected data of platooning errors. The outer loop is a model predictive control (MPC) that embeds a data-driven internal model to predict the future platooning error evolution. The proposed design is evaluated on a mixed platoon with a representative aggressive reference velocity profile, the SFTP-US06 Drive Cycle. The results confirm efficacy of the design and its advantages over the existing single loop data-driven MPC in terms of platoon stability and computational cost.Comment: 10 pages, 6 figures. This paper has been accepted by IET Intelligent Transport System

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems

    Get PDF
    This paper proposes an integrated fault estimation and fault-tolerant control (FTC) design for Lipschitz non-linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non-linear unknown input observer without rank requirement is developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC system is constructed. The observer and controller gains are obtained together via H∞ optimization with a single-step linear matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single-link manipulator example is given to illustrate the effectiveness of the proposed approach

    Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modelling

    Get PDF
    This paper proposes an integrated design of faulttolerant control (FTC) for nonlinear systems using Takagi-Sugeno (T-S) fuzzy models in the presence of modelling uncertainty along with actuator/sensor faults and external disturbance. An augmented state unknown input observer is proposed to estimate the faults and system states simultaneously, and using the estimates an FTC controller is developed to ensure robust stability of the closed-loop system. The main challenge arises from the bi-directional robustness interactions since the fault estimation (FE) and FTC functions have an uncertain effect on each other. The proposed strategy uses a single-step linear matrix inequality formulation to integrate together the designs of FE and FTC functions to satisfy the required robustness. The integrated strategy is demonstrated to be effective through a tutorial example of an inverted pendulum system (based on robust T-S fuzzy designs)

    A new strategy for integration of fault estimation within fault-tolerant control

    Get PDF
    © 2016 Elsevier Ltd. All rights reserved. The problem of active fault tolerant control (FTC) of dynamical systems involves the process of fault detection and isolation/fault estimation (FDI/FE) used to either make a decision as to when and how to change the control, based on FDI or to compensate the fault in the control system via FE. The combination of the decision-making/estimation and control gives rise to a bi-directional uncertainty in which the modelling and fault uncertainties and disturbances all affect the quality and robustness of the FTC system. This leads to the FTC requirement for an integrated design of the FDI/FE and control system reconfiguration. This paper focuses on the FTC approach using FE and fault compensation within the control system in which the design is achieved by integrating together the FE and FTC controller modules. The FE is based on a modified reduced-/full-order unknown input observer and the FTC system is constructed by sliding mode control using state/output feedback. The integrated design is converted into an observer-based robust control problem solved via H ∞ optimization with a single-step LMI formulation. The performance effectiveness of the proposed integrated design approach is illustrated through studying the control of an uncertain model of a DC motor

    Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation

    Get PDF
    © The Institution of Engineering and Technology 2017. This study proposes a fault estimation (FE)-based fault-tolerant control (FTC) strategy to maintain system reliability and achieve desirable control performance for a 3-DOF helicopter system with both actuator drift and oscillation faults and saturation. The effects of the faults and saturation are combined into a composite non-differentiable actuator fault function, which is approximated by a differentiable function and estimated together with the system state using a non-linear unknown input observer. An adaptive sliding mode controller based on the estimates is developed to compensate the effects of the faults and saturation. Taking into account the bi-directional robustness interactions between the FE and FTC functions, an integrated design approach is proposed to obtain the observer and controller gains in a single step, so as to achieve robust overall FTC system performance. In fault-free cases, the proposed strategy can be considered as a new approach for anti-windup control to compensate the effect of input saturation. Comparative simulations are provided to verify the effectiveness of the proposed design under different actuator fault scenarios

    Finding the LQR weights to ensure the associated Riccati equations admit a common solution

    Get PDF
    This paper addresses the problem of finding the linear quadratic regulator (LQR) weights such that the associated discrete-time algebraic Riccati equations admit a common optimal stabilising solution. Solving such a problem is key to designing LQR controllers to stabilise discrete-time switched linear systems under arbitrary switching, or stabilise polytopic systems (e.g., Takagi-Sugeno fuzzy systems and linear parameter varying systems) in the entire operating region. To ensure problem tractability and reduce the searching space, this paper proposes an efficient framework of finding only the state weights based on the given input weights. Linear matrix inequality conditions are derived to conveniently check feasibility of the problem. An iterative algorithm with quadratic convergence and low computational complexity is developed to solve the problem. Efficacy of the proposed method is illustrated through numerical simulations of systems with various sizes

    Provably Robust and Plausible Counterfactual Explanations for Neural Networks via Robust Optimisation

    Full text link
    Counterfactual Explanations (CEs) have received increasing interest as a major methodology for explaining neural network classifiers. Usually, CEs for an input-output pair are defined as data points with minimum distance to the input that are classified with a different label than the output. To tackle the established problem that CEs are easily invalidated when model parameters are updated (e.g. retrained), studies have proposed ways to certify the robustness of CEs under model parameter changes bounded by a norm ball. However, existing methods targeting this form of robustness are not sound or complete, and they may generate implausible CEs, i.e., outliers wrt the training dataset. In fact, no existing method simultaneously optimises for proximity and plausibility while preserving robustness guarantees. In this work, we propose Provably RObust and PLAusible Counterfactual Explanations (PROPLACE), a method leveraging on robust optimisation techniques to address the aforementioned limitations in the literature. We formulate an iterative algorithm to compute provably robust CEs and prove its convergence, soundness and completeness. Through a comparative experiment involving six baselines, five of which target robustness, we show that PROPLACE achieves state-of-the-art performances against metrics on three evaluation aspects.Comment: Accepted at ACML 2023, camera-ready versio

    Safe and robust data-driven cooperative control policy for mixed vehicle platoons

    Get PDF
    This article considers mixed platoons consisting of both human-driven vehicles (HVs) and automated vehicles (AVs). The uncertainties and randomness in human driving behaviors highly affect the platoon safety and stability. However, most existing control strategies are either for platoons of pure AVs, or for special formations of mixed platoons with known HV models. This article addresses the control of mixed platoons with more general formations and unknown HV models. An innovative data-driven policy learning strategy is proposed to design the controllers for AVs based on vehicle-to-vehicle (V2V) communications. The policy learning strategy is embedded with the constraints of control input, inter-vehicular distance error and V2V communication topology. The strategy establishes a safe and robustly stable mixed platoon using prescribed communication topologies. The design efficacy is verified through simulations of a mixed platoon with different communication topologies and leader velocity profiles
    corecore